This study presents a numerical methodology for analyzing hydroacoustic noise generation and its propagation in a homogeneous domain using Lighthill’s analogy, the finite volume method, and hybrid-Higdon boundary conditions. The approach consists of three key steps: performing an eddy-resolving Large Eddy Simulation to capture the unsteady fluid dynamics, extracting the turbulent field to compute the acoustic source term via Lighthill’s analogy, and solving a homogeneous wave equation to propagate the noise in an open domain. The methodology is applied to a turbulent plane channel flow, simulating the acoustic field for a fluid with water-like density at a Mach number of 0.1. The results reveal the spatial distribution of the acoustic pressure, highlighting the dominant noise sources and their spectral characteristics. The acoustic domain extends beyond the turbulent region, enabling the study of pressure propagation outside the flow. The findings demonstrate that noise generation is strongly linked to turbulent structures near the walls, with significant acoustic radiation occurring in the low-wavenumber range. This framework provides a powerful tool for modeling noise propagation in marine and industrial applications, offering insights into turbulence-induced sound in underwater environments. Future work could extend the approach to more complex geometries, higher Reynolds numbers, and heterogeneous domains, further advancing its applicability to real-world acoustic challenges.
Loading....